85 research outputs found

    Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain

    Get PDF
    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally.Fil: Eldholm, Vegard. Norwegian Institute of Public Health; NoruegaFil: Monteserin, Johana. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rieux, Adrien. Colegio Universitario de Londres; Reino UnidoFil: Lopez, Beatriz. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Sobkowiak, Benjamin. Colegio Universitario de Londres; Reino UnidoFil: Ritacco, Gloria Viviana. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Balloux, Francois. Colegio Universitario de Londres; Reino Unid

    Spatiotemporal dynamics in the early stages of the 2009 A/H1N1 influenza pandemic.

    Get PDF
    Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The ongoing influenza A/H1N1 pandemic may represent a tipping point in this trend, with A/H1N1 being the first human pathogen routinely genotyped from the beginning of its spread. To take full advantage of this genetic information, we introduce a novel method to reconstruct the spatiotemporal dynamics of outbreaks from sequence data. The approach is based on a new paradigm were ancestries are inferred directly rather than through the reconstruction of most recent common ancestors (MRCAs) as in phylogenetics. Using 279 A/H1N1 hemagglutinin (HA) sequences, we confirm the emergence of the 2009 flu pandemic in Mexico. The virus initially spread to the US, and then to the rest of the world with both Mexico and the US acting as the main sources. While compatible with current epidemiological understanding of the 2009 H1N1 pandemic, our results provide a much finer picture of the spatiotemporal dynamics. The results also highlight how much additional epidemiological information can be gathered from genetic monitoring of a disease outbreak

    Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity

    Get PDF
    This project was funded by the UK Natural Environmental Research Council (NERC) grant NE/E006701/1, the European Research Council (ERC) grant 260801-BIG_IDEA, the Swiss National Science Foundation grant 31-125099 and the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (http://www.bd-maps.eu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Transcriptional Heterogeneity of Cryptococcus gattii VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways

    Get PDF
    We thank Jose Munoz for his input on the analysis of the mouse RNA-seq enrichment. R.A.F. was supported by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship. M.C.F. and J.R. were supported by Medical Research Council grant MR/K000373/1. R.C.M. is supported by a Wolfson Royal Society Research Merit Award and by funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC (grant agreement no. 614562). This work was funded in part by NIAID grant U19AI110818 to the Broad Institute.Peer reviewedPublisher PD

    Antibiotic treatment regimes as a driver of the global population dynamics of a major gonorrhea lineage

    Get PDF
    The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern

    Association between bacterial homoplastic variants and radiological pathology in tuberculosis.

    Get PDF
    Funder: Biotechnology and Biological Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000268Funder: FP7 People: Marie-Curie Actions; FundRef: http://dx.doi.org/10.13039/100011264; Grant(s): EU FP7-PEOPLE-2013-IRSES - Marie Curie Action DEANBACKGROUND: Understanding how pathogen genetic factors contribute to pathology in TB could enable tailored treatments to the most pathogenic and infectious strains. New strategies are needed to control drug-resistant TB, which requires longer and costlier treatment. We hypothesised that the severity of radiological pathology on the chest radiograph in TB disease was associated with variants arising independently, multiple times (homoplasies) in the Mycobacterium tuberculosis genome. METHODS: We performed whole genome sequencing (Illumina HiSeq2000 platform) on M. tuberculosis isolates from 103 patients with drug-resistant TB in Lima between 2010 and 2013. Variables including age, sex, HIV status, previous TB disease and the percentage of lung involvement on the pretreatment chest radiograph were collected from health posts of the national TB programme. Genomic variants were identified using standard pipelines. RESULTS: Two mutations were significantly associated with more widespread radiological pathology in a multivariable regression model controlling for confounding variables (Rv2828c.141, RR 1.3, 95% CI 1.21 to 1.39, p<0.01; rpoC.1040 95% CI 1.77 to 2.16, RR 1.9, p<0.01). The rpoB.450 mutation was associated with less extensive radiological pathology (RR 0.81, 95% CI 0.69 to 0.94, p=0.03), suggestive of a bacterial fitness cost for this mutation in vivo. Patients with a previous episode of TB disease and those between 10 and 30 years of age also had significantly increased radiological pathology. CONCLUSIONS: This study is the first to compare the M. tuberculosis genome to radiological pathology on the chest radiograph. We identified two variants significantly positively associated with more widespread radiological pathology and one with reduced pathology. Prospective studies are warranted to determine whether mutations associated with increased pathology also predict the spread of drug-resistant TB

    A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target

    Get PDF
    Ranaviruses are important pathogens of amphibians, reptiles and fish. To meet the need for an analytical method for generating normalised and comparable infection data for these diverse host species, two standard-curve based quantitative-PCR (qPCR) assays were developed enabling viral load estimation across these host groups. A viral qPCR targeting the major capsid protein (MCP) gene was developed which was specific to amphibian-associated ranaviruses with high analytical sensitivity (lower limit of detection: 4.23 plasmid standard copies per reaction) and high reproducibility across a wide dynamic range (coefficient of variation below 3.82% from 3 to 3 × 108 standard copies per reaction). The comparative sensitivity of the viral qPCR was 100% (n = 78) based on agreement with an established end-point PCR. Comparative specificity with the end-point PCR was also 100% (n = 94) using samples from sites with no history of ranavirus infection. To normalise viral quantities, a host qPCR was developed which targeted a single-copy, ultra-conserved non-coding element (UCNE) of vertebrates. Viral and host qPCRs were applied to track ranavirus growth in culture. The two assays offer a robust approach to viral load estimation and the host qPCR can be paired with assays targeting other pathogens to study infection burdens

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle
    corecore